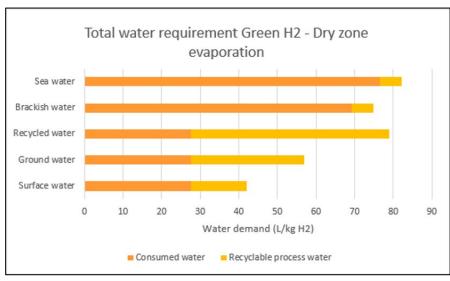
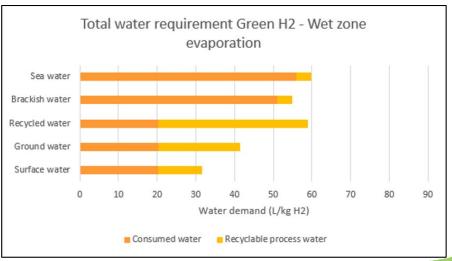


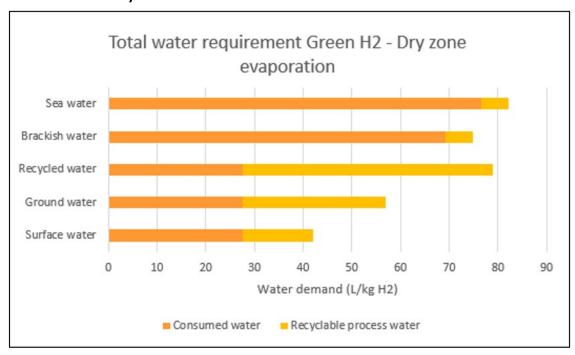
What do we need to know?

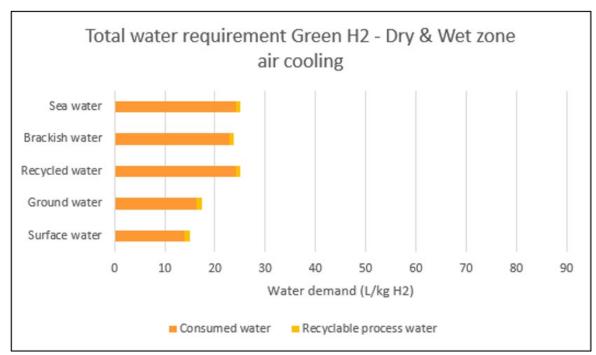




Green hydrogen – evaporative cooling

- Total water requirements vary by source water and cooling choices
- They also vary according to the age of the electrolyser, and whether the hydrogen production facility is in a dry or wet zone
- Consumed water is water that is used and not subsequently recovered
 - Consumed water for dry zone evaporative cooling option ranges from 28 litres/kg H2 (surface, ground and recycled) to 76 litres/kg H2 (sea)
 - Consumed water for wet zone evaporative cooling ranges from 20 litres/kg H2 (surface, ground and recycled) to 56 litres/kg H2 (sea)





Green hydrogen – dry zone cooling alternatives

- Air cooling results in a significant drop in consumed water for several water sources, mainly seawater and brackish water
- There is no water difference between dry and wet zone air cooling (but is less effective in cooling for dry zone)

Total volume comparisons

- When multiplied out to National Hydrogen Strategy scenario hydrogen volumes, <u>consumed</u> water in 2030 is not high compared with other industries
- By 2050 the figures could equal or exceed the water used by the mining industry as a whole

Dry zone, evap cooling	Surface	Recycled	Seawater
Water volume, litres per kg	28	28	76
Deloitte 2030, GL for 1.8Mt H2	50.4	50.4	136.8
Deloitte 2050, GL for 34.1Mt H2	954.8	954.8	2591.6

Dry zone, air cooling	Surface	Recycled	Seawater
Water volume, litres per kg	14	24	24
Deloitte 2030, GL for 1.8Mt H2	25.2	43.2	43.2
Deloitte 2050, GL for 34.1Mt H2	477.4	818.4	818.4

Sector/scenario	Water (GL)	
Total agriculture, forestry and fishing	7,319*	
Total mining	842*	
Coal mining and coal fired	383**	
power stations in NSW		
and QLD 2020		
Total manufacturing	550*	
Australian households	1,900***	
2016-17+		

^{*} ABS - 4610.0 Water Account, Australia, 2019-20, released October 2021. Totals are use that's self-extracted or distributed, minus flows returned to the environment, and have taken out energy and water because too large (hydropower).

^{**} Overton, I. (2020) 'Aren't we in a drought?', *The Conversation*, 5 May.

^{** *} Australian Infrastructure Audit 2019, Chapter 9, p. 604.

Webinar summary

- Water use for hydrogen is an important issue to understand
- The volumes required will be significant, but not necessarily a dealbreaker for the industry if the right sources and investments are made, and communities are engaged
- Surface and ground water may play a role but the bulk will need to come from manufactured water (recycled and desalinated water)
- The question then becomes one of how to plan for the future